[CONTRIBUTION FROM THE DEPARTMENT OF CHEMISTRY, NEW MEXICO HIGHLANDS UNIVERSITY]

Potential Purine Antagonists VII. Synthesis of 6-Alkylpyrazolo-[3,4-d]pyrimidines^{1,2a}

C. C. CHENG AND ROLAND K. ROBINS^{2b}

Received June 24, 1957

A synthesis of 6-alkyl-4-hydroxypyrazolo [3,4-d]pyrmidines (VI) has been devised from the corresponding 5-acylamino-4-cyanopyrazoles (IV) which were in turn prepared from 5-amino-4-cyanopyrazoles (III). Evidence is presented to show that the 5-acylaminopyrazole-4-carboxamide is an intermediate in this cyclization. Chlorination of the various 6-alkyl-4-hydroxypyrazolo [3,4-d]pyrimidines yielded the corresponding 6-alkyl-4-chloropyrazolo [3,4-d]pyrimidines (XI). Nucleophilic displacement of the chlorine atom in XI resulted in the preparation of a large number of 6-alkylpyrazolo [3,4-d]pyrimidines substituted in position 4.

The discovery^{3,4} of 6-amino-2-methylpurine (I, $R = NH_2$, $R' = CH_3$) and 6-hydroxy-2-methylpurine (I, R = OH, $R' = CH_3$) as degradation products of pseudovitamin B_{12} prompted the investigation of the preparation of the corresponding analogs in the pyrazolo[3,4-d]pyrimidine series (II, $R = NH_2$, $R' = CH_3$, and R = OH, $R' = CH_3$).

The general synthesis of the pyrazolo[3,4-d]pyrimidine system previously developed in this laboratory^{5,6} proceeds *via* the appropriate 5-amino-4-cyanopyrazole (III). The ready accessibility of the corresponding 5-acylaminopyrazole led to a study of the use of this compound in an effort to find a general synthesis of 6-alkyl-4-substituted pyrazolo-[3,4-d]pyrimidines.

Bogert and Hand reported that the preparation of 2-methyl-4-hydroxyquinazoline could be accomplished by the action of warm alkaline peroxide solution upon acylanthranilic nitriles.⁷ Following this lead it was found that when the 5-amino-4-cyanopyrazoles^{5,6} (III) were acylated by either acetic or propionic anhydride to give the corresponding 5-acylamino-4-cyanopyrazoles (IV), these derivatives (IV) when treated with hydrogen peroxide in alkaline solution at 70–80° gave the desired 6-alkyl-4-hydroxypyrazole[3,4-d]pyrimidines (VI) in excellent yield.

- (1) This investigation was supported by research grant C-2105 from the National Cancer Institute of the National Institutes of Health, Public Health Service.
- (2) (a) Presented in part before the Division of Medicinal Chemistry, 128th Meeting of the American Chemical Society, Minneapolis, Minn., September 1955. (b) Present address: Dept. of Chemistry, Arizona State College, Tempe, Arizona.
- (3) Dion, Calkins and Pfiffner, J. Am. Chem. Soc., 76, 948 (1954).
 - (4) Brown and Smith, Biochem. J., 56, 34 (1954).
 - (5) Robins, J. Am. Chem. Soc., 78, 784 (1956).
 - (6) Cheng and Robins, J. Org. Chem., 21, 1240 (1956).
 - (7) Bogert and Hand, J. Am. Chem. Soc., 24, 1048 (1902).

In succeeding reactions it proved unnecessary to isolate and purify the 5-acylamino-4-cyanopyrazole (IV). The crude syrupy residue (IV) remaining after distillation of the excess anhydride gave VI directly when treated with hydrogen peroxide in alkaline solution.

The over-all yield of the desired 6-alkyl-4-hydroxypyrazolo[3,4-d]pyrimidines (VI) obtained in this manner was even improved.

In the case of acetylation of 5-amino-4-cyano-1- β -hydroxyethylpyrazole(III, $R_1 = CH_2CH_2OH$), the acetylated product obtained was 1- β -acetoxyethyl-5-acetylamino-4-cyanopyrazole (IV, $R_1 = CH_2CH_2OCOCH_3$). It is interesting to note that when his product was cyclized in the base-peroxide medium, the original R_1 group was regenerated and 4-hydroxy-1- β -hydroxyethyl-6-methylpyrazolo[3,4-d]pyrimidine was the product obtained.

The probable intermediate, 5-acylaminopyrazole-4-carboxamide (V), could not be isolated during the process of cyclization. An attempt to prepare 5-acetylamino-1-phenylpyrazole-4-carboxamide (V, $R_1 = C_6H_5$, $R = CH_3$) from 5-acetylamino-4-cyano-1-phenylpyrazole (IV, $R_1 = C_6H_5$, $R_2 = CH_3$) and concentrated sulfuric acid at 15–20° was unsuccessful. The product isolated was identified as 5-amino-1-phenylpyrazole-4-carboxamide (VII). VII has previously been reported, prepared by the action of concentrated sulfuric acid on 5-amino-4-cyano-1-phenylpyrazole.

Another attempt to prepare the suspected intermediate 5-acetylamino-1-phenylpyrazole-4-carboxamide from the acetylation of 5-amino-1-phenylpyrazole-4-carboxamide (VII) resulted in the formation of 6-methyl-4-keto-1-phenylpyrazolo[3,4-d]-5,7-oxazine (VIII). The formation of VIII is not entirely unexpected since benzoxazines can be prepared by heating anthranilic acid, substituted anthranilic acids and N-acetyl or N-benzoyl derivatives with acetic anhydride.8

$$\begin{array}{c|c} & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

The desired intermediate, 5-acetylamino-1-phenylpyrazole-4-carboxamide (V), was finally prepared from VIII and alcoholic ammonia on the steam bath. Treatment of V with 10% potassium hydroxide cyclized the acetylated amide almost immediately to 4-hydroxy-6-methyl-1-phenylpyrazolo[3,4-d]pyrimidine (VI, $R_1 = C_6H_5$, $R_2 = CH_3$).

The oxazone ring in 6-methyl-4-keto-1-phenyl-pyrazolo[3,4-d]5,7-oxazine is not very stable and is ruptured easily in basic solution to form 5-acetyl-amino-1-phenylpyrazole-4-carboxylic acid (IX) which loses carbon dioxide readily on heating. It is interesting to note that the 5-acetylamino group

was retained in warm alkaline solution but hydrolyzed quite readily in the cold acidic medium.

Justoni and Fusco⁹ prepared "1',3'-diphenyl-6-hydroxy-2-methyl(pyrazolo-5',4':4,5-pyrimidine)" which is the only 6-alkylpyrazolo[3,4-d]pyrimidine reported prior to this work, from the dehydration of 5-acetylamino-1,3-diphenylpyrazole-4-carboxamide by heating with a direct flame. In this regard it is noteworthy that in the case of 5-acetylamino-1-phenylpyrazole-4-carboxamide a definite melting point could not be obtained on the Fisher-Johns melting point apparatus since thermal cyclization took place in a similar manner to give 1-phenyl-6-methyl-4-hydroxypyrazolo[3,4-d]pyrimidine.

The preparation of the pyrazolo[3,4-d]pyrimidine ring system by the fusion of formamide with the corresponding 5-amino-4-cyanopyrazoles of 5-aminopyrazole-4-carboxamide has been employed quite extensively.^{5,6} Several attempts under various conditions to utilize acetamide or p-nitrobenzamide in place of formamide in the fusion reaction to give the corresponding 6-methyl or 6-p-nitrophenylpyrazolo[3,4-d]pyrimidine were unsuccessful. In both cases the unreacted pyrazoles were recovered.

A methyl group substituted on the pyrazolo[3,4-d]pyrimidine ring at the position "3" was also prepared in the 6-alkyl series by acylation of the corresponding 3-methyl-5-amino-4-cyanopyrazole followed by base-peroxide cyclization.

Chlorination of the 4-hydroxy-6-alkyl-1-alkyl-(aryl)pyrazolo[3,4-d]pyrimidines was carried out under conditions similar to those employed for compounds having no alkyl substituent at the 6-position. However, for the chlorination of 4-hydroxy-6-methylpyrazolo[3,4-d]pyrimidine (where the substituent at the 1- position is hydrogen) a considerable amount of N,N-dimethylaniline was required in addition to phosphorus oxychloride to effect successful chlorination. A similar situation has been found with 4-hydroxypyrazolo[3,4-d]pyrimidine⁵ as compared to the case of the 1-alkyl (aryl)-4-hydroxypyrazolo[3,4-d]pyrimidines. 6

The compound, 4-amino-6-methylpyrazolo[3,4-d]pyrimidine, an analog of 6-amino-2-methylpurine, was prepared by heating XI with alcoholic ammonia in a bomb. Various substituted amino derivatives were prepared by the reaction of XI with various primary and secondary amines, heated in aqueous or alcoholic solution on the steam bath, as shown in the reaction scheme. These compounds are listed in Table III.

The 4-mercapto-6-alkylpyrazolo[3,4-d]pyrimidines (XII) were prepared by two methods—either by the thiation of the corresponding 4-hydroxy compound (VI) with phosphorus pentasulfide in tetralin or by the reaction of the 4-chloro compound (XI) with thiourea in alcoholic solution. Samples

^{(8) (}a) Bredy and Hof, Ber., 33, 29 (1900); (b) Bogert and Seil, J. Am. Chem. Soc., 29, 517 (1907); (c) Lothrop and Goodwin, J. Am. Chem. Soc., 65, 363 (1943); (d) Zentmyer and Wagner, J. Org, Chem., 14, 967 (1949); (e) Tomisek and Christensen, J. Am. Chem. Soc., 70, 2423 (1948).

⁽⁹⁾ Justoni and Fusco, Gazz. chim. ital., 68, 66 (1938).

of products which were prepared by both methods were identical.

4-Alkoxy-6-alkyl derivatives (XIV) (Table II) were prepared from XI and sodium alkoxide at comparatively low temperatures. The sulfur analogs, 4-alkylmercapto-6-alkyl derivatives (XIII), were prepared by either the reaction of XI and potassium alkyl mercaptide or by the alkylation of XII in basic media with methyl iodide.

The presence of an alkyl group at the 6 position caused a definite hypsochromic shift in the absorption spectra in the ultraviolet region of the order of 2 to 10 m μ .

In the 6-alkyl-4-substituted pyrazolo[3,4-d]pyrimidines, ortho substitution of the aromatic ring at position 1 appears to cause interference to the conjugation of the pyrazole and the benzene ring. This was indicated by the ultraviolet absorption measurements as illustrated by strong absorption in ethanol for 4-chloro-6-methyl-1-phenylpyrazolo-[3,4-d] pyrimidine (λ_{max} 238 m μ , $\epsilon = 28,200$), 4chloro-6-ethyl-1-phenylpyrazolo[3,4-d]pyrimidine $(\lambda_{\text{max}} 239 \text{ m}\mu, \epsilon = 30,000), 4\text{-chloro-6-methyl-1-}$ p-tolylpyrazolo[3,4-d]pyrimidine (λ_{max} 249 m μ , $\epsilon =$ 35,200), 4-chloro-6-methyl-1-p-chlorophenylpyrazolo[3,4-d] pyrimidine (λ_{max} 249 m μ , $\epsilon = 60,000$) 4-chloro-6-methyl-1-p-bromopyrazolo[3,4-d]pyrimidine (λ_{max} 251 m μ , $\epsilon = 40,400$); whereas the 4-chloro-6-methyl-1-(o-chlorocorresponding phenyl)pyrazolo[3,4-d]pyrimidine exhibited a weak absorption peak at 264 m μ ($\epsilon = 7500$). The latter compound showed rather closely the ultraviolet absorption characteristic of the 1-alkyl series. Thus the absorption spectra for 4-chloro-6-methylpyrazolo[3,4-d]pyrimidine (λ_{max} 265 m μ , $\epsilon = 5050$) 4-chloro-1,6-dimethylpyrazolo[3,4-d]pyrimidine $(\lambda_{\text{max}} 266 \text{ m}\mu, \epsilon = 5470)$ are typical. The absorption spectra of 4-chloro-6-methyl-1-(o-chlorophenyl)pyrazolo[3,4-d]pyrimidine is probably due to the hypsochromic shift of the interfered conjugated absorption caused by the ortho substitution, thus revealing the original absorption due to the nucleus, which exhibits a rather low optical intensity.

The screening of these compounds against tumors in mice thus far has not revealed any significant antitumor agents in this series. A full report of this testing has appeared. Dome interesting observations of these compounds in inhibiting the growth of Neurospora crassa has been observed. The compound 4-dimethylamino-6-methyl-1-(p-tolyl)pyrazolo[3,4-d]pyrimidine at a low dosage showed relatively pronounced inhibition, however at larger dosages growth was supported by the same compound. Further microbiological testing is in progress.

EXPERIMENTAL

All melting points are uncorrected and, unless otherwise stated, were taken on a Fisher-Johns melting point apparatus.

Preparation of 1-alkyl(aryl)-5-acetylamino-4-cyanopyrazoles. See Table I. Example (1) 5-Acetylamino-4-cyanopyrazole⁵ (IV, $R_1 = H$, $R_2 = CH_3$). A mixture of 250 ml. of acetic anhydride and 80 g. of 5-amino-4-cyanopyrazole⁵ (III, $R_1 = H$) was refluxed for 10 hr. Excess acetic anhydride was distilled off under reduced pressure. The syrupy substance was poured into 30 ml. of benzene. The mixture was stirred for several minutes, and the product crystallized slowly. The solid was filtered and recrystallized from water to give 89 g. (76%) of white crystals, m.p. 214–218°. A second recrystallization from water gave a m.p. of 221–222°.

Anal. Calcd. for $C_6H_6N_4O$: C, 48.0; H, 4.02; N, 37.3. Found: C, 47.9; H, 4.36; N, 37.4.

Example (2) 5-Acetylamino-4-cyano-1-methylpyrazole (IV, R_1 , $R_2 = CH_3$). The procedure was similar to that for the acetylation of 5-amino-4-cyanopyrazole. The crude product (yield 90%) was recrystallized from water to give a white powder, m.p. $210-211^{\circ}$.

Anal. Caled. for C₇H₈N₄O: C, 51.1; H, 4.91. Found: C, 51.1: H, 4.91

Example (3) 5-Acetylamino-4-cyano-1-phenylpyrazole (IV, $R_1 = C_6H_5$, $R_2 = CH_3$). One hundred fifty g. of 5-amino-4-cyano-1-phenylpyrazole⁶ (III, $R_1 = C_6H_5$) was treated with 200 ml. of acetic anhydride and refluxed for 19 hr. Excess solvent was taken off under reduced pressure. To the syrupy residue was added a small amount of benzene and skelly-solve (b.p. 60°). The product crystallized gradually. It was filtered and washed with a little benzene and was recrystallized from water to give 171 g. (92%) of a white crystalline compound which melted at 171–172°.

Anal. Calcd. for $C_{12}H_{10}N_4O_2$: C, 63.6; H, 4.45. Found: C, 63.2; H, 4.44.

Preparation of 5-amino-1-phenylpyrazole-4-carboxamide (VII) by the action of concentrated sulfuric acid on 5-acetylamino-4-cyano-1-phenylpyrazole. To 120 ml. of concentrated sulfuric acid cooled in icebath was gradually added, with continuous stirring, 30 g. of finely powdered 5-acetylamino-4-cyano-1-phenylpyrazole. The inside temperature was maintained at 15-20°. After the reaction was complete, the clear solution was allowed to stir for 30 min. It was then

⁽¹⁰⁾ Skipper, Robins, Thomson, Cheng, Brockman, and Schabel, Cancer Research, 17, 579 (1957).

⁽¹¹⁾ Fuerst, Somers, and Hsu, J. Bacteriol., 72, 387 (1956).

				U.V	U.V. Absorption	ion					Ana	Analyses		
		MP	Vield.	nH = 1.		pH = 11.		Recrystallization		Calcd.			Found	
\mathbb{R}_{2}	\mathbf{R}_3	.C.	%	λmax	w	λmax	Ψ	Solvents	C	H	Z	C	Н	ż
Н	CH3	221°-222°	92	THE PERSON OF TH		234	7,050	Water	48.0	4.02	37.3	47.9	4.36	37.4
Η	CH,	210 - 211	72	228	8,800	231	5,900	Water	41.2	4.91		51.2	4.91	
H	CH,	155 - 156	95	248	15,400	245	16,300	Water	63.6	4.45	24.8	63.2	4.44	24.1
Η	CH_3	175 - 175.5	85		•			ethanol, water	55.3	3.48	21.5	54.5	3.45	21.5
H	CH,	173 - 175	96	238	20,800	246	21,300	ethanol, water			21.5			21.3
H	CH_3	175 - 175	86	238	22,300	237	26,500	ethanol, water	47.3	2.97		47.0	3.57	
Η	CH,	198 - 200	95	286	12,400	290	11,100	ethanol, water	53.2			52.8	3.34	
H	CH,	128	96	238	13,900	239	17,800	ethanol, water			23.3			23.4
Н	CH_s	155-157	81	226	7,300			ethanol	50.9	5.12	23.7	51.1	5.04	24.0

5-Acylamino-4-cyanopyrazoles

poured with vigorous stirring, onto 1 kg. of crushed ice. The solution was then neutralized with concentrated ammonium hydroxide. A white precipitate which formed instantly was filtered and washed with water, dried, and recrystallized from benzene and methanol to give 20 g. (78%) of a white solid, m.p. 171-172°. Recrystallization from ethanol and water raised the melting point of the product to 172-175°

Anal. Calcd. for $C_{10}H_{10}N_4O: N, 27.7$. Found: N, 27.9.

A mixture of this compound and the compound prepared from the hydrolysis of 5-amino-4-cyano-1-phenylpyrazole⁶ showed no depression in melting point.

6-Methyl-4-keto-1-phenylpyrazolo [3,4-d]-5,7-oxazine (VIII). A mixture of 20 g. of 5-amino-1-phenylpyrazole-4-carboxamide and 200 ml. of acetic anhydride was refluxed for 15 hr. Excess anhydride was distilled under reduced pressure. The residue solidified on cooling. It was recrystallized from a mixture of benzene and heptane to give 15 g. (67%) of a yellow solid, m.p. 184.5-185.5° (sublimed at 145°).

Anal. Calcd. for C₁₂H₉N₃O₂: C, 63.6; H, 4.00; N, 18.5. Found: C, 63.3; H, 4.11; N, 18.6.

5-Acetylamino-1-phenylpyrazole-4-carboxylic acid (IX). Two and one-half g. of 6-methyl-4-keto-1-phenylpyrazolo-[3,4-d]-5,7-oxazine were mixed with 200 ml. of water conide. The mixture was kept taining 2 g. of potassium 1 at room temperature for 2 nd then heated on a steam bath for 10 hr. and finally accumed with glacial acetic acid. A white precipitate gradually formed. The compound was filtered and reprecipitated from base with acetic acid to give 2 g. (74%) of white needles, m.p. 201–202° (with evolution of gas).

Anal. Calcd. for $C_{12}H_{11}N_3O_3$: C, 58.9; H, 4.52; N, 17.2.

Found: C, 58.7; H, 4.37; N, 17.1.

Preparation of 5-acetylamino-1-phenylpyrazole-4-carboxamide (V). Two g. of 6-methyl-4-keto-1-phenylpyrazolo[3,4d]-5,7-oxazine were added to 100 ml. of alcoholic ammonia. The mixture was allowed to stand at room temperature for 30 min. with occasionally shaking. It was then heated briefly on a steam bath until a solid product precipitated from the alcoholic solution. The product was filtered, and, the product dried at 100° for 5 hr. The m.p. was 301-302°. Owing to the relative instability of this compound, it was analyzed without further purification.

Anal. Calcd. for C₁₂H₁₂N₄O₂: C, 59.1; H, 4.94; N, 22.0.

Found: C, 59.6; H, 5.06; N, 23.0.

The melting point of this compound was the same as that for 4-hydroxy-6-methyl-1-phenylpyrazolo[3,4-d]pyrimidine. A mixed melting point indicated no depression. However, the ultraviolet absorption spectra for the carboxamide (in neutral solution, λ_{max} 230 m μ) and that for the cyclized pyrazolo[3,4-d]pyrimidine (in neutral solution, λ_{max} 233 $m\mu$, 269 $m\mu$) were different. So were the analyses of these two compounds. This indicated that the carboxamide cyclized at elevated temperature during the melting point determination. The thermal cyclization was further confirmed by the determination of ultraviolet absorption spectra of the acetylated carboxamide after heating at $350\,^\circ$ for 30 min. The spectra were found to be identical to that of 4-hydroxy- $\hbox{6-methyl-1-phenylpyrazolo} \ [3,4-d] \ \hbox{pyrimidine}.$

Preparation of 1-alkyl(aryl)-4-hydroxy-6-methylpyrazolo-(3,4-d) pyrimidines (VI). See Table II. 4-Hydroxy-6-methylpyrazolo[3,4-d] pyrimidine (VI, $R_1 = H$, $R_2 = CH_3$). A mixture of 1.5 g. of 5-acetylamino-4-cyanopyrazole, 7 ml. of 10% potassium hydroxide, and 15 ml. of 3% hydrogen peroxide was warmed on a water bath for 30 min. The temperature of the bath was kept at 70-75°. The mixture was then acidified with glacial acetic acid. A white precipitate was formed gradually from the clear solution. It was filtered and reprecipitated from dilute potassium hydroxide and acetic acid to give 1.1 g. (74%) of white powder, m.p. 336-338° (dec.). The melting point was determined on a copper block.

Anal. Calcd. for C₆H₆N₄O: C, 48.0; H, 4.00; N, 37.3. Found: C, 48.3; H, 3.98; N, 37.4.

TABLE II. 6-ALKYL 1,4-DISUBSTITUTED PYRAZOLO [3,4-d] PYRIMIDINES

		AT THE RESIDENCE OF THE PROPERTY OF THE PROPER		The second second	V 11	II V Abcountion						Analyses	vses		
			МВ	Viold	лН 1	. Absorpaio	nH 11		Received Higation		Calcd.			Found	
R.	R_2	\mathbf{R}_{3}	°C.	, % %	λmax	¥	ρτιττ, λmax	¥	Solvents	ပ	H	z	C	Н	Z
H	CH ₃	ЮН	336-338	73.5	252	8,550	259	8,850	Acetic acid	48.0	4.30	37.3	48.3	3.98	37.4
шн	CH,	5 H	140 (dec.) >300	0.08	256 233	5,700 8,150	592	4,700	Benzene Reporte	42.7	2.97	88 88 89 89 89 89	42.5	2.91	33.6 34.1
77	OIL	110	000	0.00	323	20,400	315	18,000	reddan:			0.00			1
н	$\mathrm{C_2H_3}$	НО	>300	85.0	253	10,200	259	10,300	Ethanol, water	51.4	4.87	34.1	51.1	4.78	33.8
CH3	$ m CH_3$	НО	277-278	72.5	253	10,300	268	10,800	Ethanol, water	51.4	4.87	34.1	51.7	4.88	34.2
CH_s	$ m CH_3$	ご	74	70.2	267	8,650	268	9,150	Heptane	46.1	3.84	30.7	45.9	4.01	30.6
CH_s	$ m CH_3$	$^{ m RH}$	264 - 265	0.86	236	7,100	232	12,100	Repptd.			31.1			31.0
					322	21,200	318	16,600							
CH_3	CH3	OCH;	107.5-108.5	67.5	252	5,500	252	7,500	Methanol	53.9	5.66	$\frac{31.4}{20.2}$	54.0	5.91	$\frac{31.4}{20.4}$
CH,	CH_3	SCH_3	74–75	90.2	251	6,800	261	8, 150	Methanol, water	:	1	8. 8. 8.	1	1	28.7
CH2CH2OH	CH_3	HO	265-266	54.8	253	9,100	253	10,100	Water	49.5	5.18	58.9 6.83	49.7	5.18	0.82 0.83
C_6H_5	CH_3	ರ	85-86	83.5					Heptane	58.9	3 72	23	29.0	3.54	23.4
C_6H_5	CH_3	SH	268.5	83.3	$\frac{226}{5}$	19,360	238	26,000	Repptd.	59.5	4.16	73.1	59.4	4.16	23.4
					259 390	12,800 21,000	319	20,300							
C.H.	CH.	OCH.	191 5-199		070	21,000			Methanol	65.0	5 04	23.3	64.5	5 00	93.6
L L	CH.	OC.H.	05-05 5						Ethanol	66.9	1 20	200	66.9	5.56	20.5
CH.	CH.	SCH.	$135_{-}137$						Methanol water	3	5	977		10.0	21.2
C.H.	CH.		86-88 86-88						Ethanol, water			20.7			20.9
C.H.	CH,	OH	295	88.5	229	28.300	275	14,400	Ethanol, water			23.3			23.5
C,H,	C_{H_5}	SH	248-249	91.6	231	12,300	239	26,400	Repptd.	60.69	4.72	21.9	60.4	5.05	21.7
					$275 \\ 320$	13,600 15,600	319	18,200							
$p ext{-}\mathrm{CH}_3\mathrm{C}_6\mathrm{H}_4$	CH_3	НО	298-300	93.6	230	35,700	275	15,400	Ethanol, water			23.4			23.5
$p ext{-} ext{CH}_3 ext{C}_6 ext{H}_4$	CH_3	ರ	89–91	78.1					Heptane			21.6			21.6
$p ext{-} ext{CH}_3 ext{C}_6 ext{H}_1$	CH_3	OCH_3	121-122	81.2					Methanol			22.0			21.7
$p ext{-} ext{CH}_3 ext{C}_6 ext{H}_4$	$_{ m cH}_{ m s}$	OC2Hs	93-94	53.0					Ethanol			20.9			20.8
o-ClC ₆ H,	CH_{3}	ت ت	121	77.8	. 000	1	97.0	000	Hexane			20.7			20.1
$p ext{-}BrC_6H_4$	Ĉ C	HO	>315	Q. Q.	239	37,200	240	52,000 18,300	Ethanol, water			18.4			18.5
$p ext{-BrC}_{ m sH}$	CH_{s}	ರ	130.5-131				i	200,00	Hexane			17.3			17.3
p-CIC ₆ H ₄	CH	Н0	>310	94.5	240	36,400	240	41,700	Ethanol, water	55.4	3.46	21.5	55.1	3.37	21.2
	į	ě	!				278	17,400		1	0	,	6	0	0
p-CIC ₆ H ₄	CH,	5	129						Heptane	21.7	5.89	20.1 95.9	52.2	2.99	19.9 og o
P-CICent	CH.	HC	>505 >310	7. C 0. C	948	14.350	956	16 000	nepped. Reportd	53 1	3 34	55.5 5.0 5.0	53	92. 6	25.2
P-11 02 06114		1	010		306	14,900	321	13,800	· maddan	•	5	2	52.4	3.26	
$p ext{-}\mathrm{NO}_2\mathrm{C}_6\mathrm{H}_4$	CH_s	CI	184	82.0					Toluene			24.2			24.2

4-Hydroxy-1,6-dimethylpyrazolo[3,4-d]pyrimidine (VI, R1, $R_2 = CH_3$). One hundred twenty-one g. of 5-acetylamino-1-methyl-4-cyanopyrazole were added to a mixture of 1500 ml. of 3% hydrogen peroxide and 400 ml. of 10% potassium hydroxide. The mixture was warmed at 70° for 10 hr. It was then filtered and acidified to yield light yellow crystalline precipitate. The crude product was recrystallized from ethanol to give 103 g. (73%) of needles, m.p. $277-278^{\circ}$ (sublimed at 180°).

Anal. Calcd. for C₇H₈N₄O: C, 51.2; H, 4.90; N, 34.2. Found: C, 51.2; H, 4.88; N, 34.2.

4-Hydroxy-6-methyl-1-phenylpyrazolo(3,4-d)pyrimidine (VI, $R_1 = C_6H_5$, $R_2 = CH_3$). Method (1): 5-Acetylamino-4cyano-1-phenylpyrazole (14.5 g.) was dissolved in a solution of 5 g. of potassium hydroxide and 200 ml. of 3% hydrogen peroxide. The mixture was warmed at $70-75^{\circ}$ for 5 hr. It was then acidified with glacial acetic acid to give a white precipitate. The product was recrystallized from ethanol to give 14 g. (97%) of white needles which melted at 298-300°. Another recrystallization raised the melting point to 301-302°.

Anal. Caled. for C₁₂H₁₀N₄O: C, 64.0; H, 4.42; N, 24.8. Found: C, 63.7; H, 4.33; N, 24.6.

Method (2): One g. of 5-acetylamino-1-phenylpyrazole-4carboxamide was added to 100 ml. of 10% potassium hydroxide solution. The mixture was heated on a water bath (70°) for 20 min. and then acidified with glacial acetic acid. The white precipitate which formed immediately was filtered and washed with water. Recrystallization from ethanol gave 0.8 g. of white needles which melted at 301° The mixed melting point of this product and that prepared by Method (1) showed no depression. The ultraviolet absorption spectra of this compound and the compound made from Method (1) were identical.

Preparation of 1-alkyl(aryl)-4-chloro-6-methylpyrazolo[3,4d] pyrimidines (XI). See Table II. 4-Chloro-6-methylpyrazolo-[3,4-d] pyrimidine (XI, $R_1 = H$, $R_2 = CH_3$). Fifty g. of finely powdered 4-hydroxy-6-methylpyrazolo[3,4-d]pyrimidine were added to a mixture of 140 ml. of N,N-dimethylaniline (mono-free) and 1 l. of phosphorus oxychloride. The mixture was refluxed for 2 hr. until all the solid went into solution. Excess phosphorus oxychloride was distilled under reduced pressure, and the syrupy residue was poured onto crushed ice with vigorous stirring. The aqueous suspension was extracted with ether (6 l. required). The ethereal extract was washed well with water until absolutely free from acid. The ether extract was dried over magnesium sulfate for 12 hr. and finally distilled slowly from a water bath. The last trace of ether was removed with a stream of air. This procedure was necessary to avoid the decomposition of the chloro- compound by overheating. The crude compound was recrystallized from dry benzene to give 35 g. (62%) of the product which decomposed without melting at 135-140°.

Anal. Calcd. for C₆H₅N₄Cl: C, 42.7; H, 2.70; N, 33.3. Found: C, 42.5; H, 2.91; N, 33.6.

 $\label{eq:chloro-1,6-dimethylpyrazolo} \textit{[3,4-d]} \ pyrimidine \quad (XI, \quad R_{i},$ $R_2 = CH_3$). Twenty-five g. of 4-hydroxy-1,6-dimethylpyrazolo[3,4-d]pyrimidine and 400 ml. of phosphorus oxychloride were refluxed for 2 hr. Excess solvent was distilled from the clear solution. The syrup, which contained a small amount of phosphorus oxychloride so that it could be poured out easily, was poured slowly onto 1 kg. of crushed ice with vigorous stirring. The cold aqueous suspension was allowed to stand for 15 min, and then extracted with chloroform. The extract was dried over anhydrous sodium sulfate overnight. Chloroform was distilled at room temperature and a brownish yellow liquid resulted which solidified on cooling. The product was recrystallized from nheptane to give 24 g. (\$7%) of white needles, m.p. 74°.

Anal. Calcd. for C₇H₇N₄Cl: C, 46.1; H, 3.84; N, 30.7.

Found: C, 45.9; H, 4.01; N, 30.6.

4-Chloro-6-methyl-1-(p-nitrophenyl)pyrazolo[3,4-d]pyrimidine (XI, $R_1 = p-NO_2C_6H_4$, $R_2 = CH_3$). To 250 ml. of phosphorus oxychloride were added 20 g. of powdered 4hydroxy-6-methyl-1-(p - nitrophenyl)pyrazolo[3, 4 - d]pyrimidine. The mixture was refluxed for 3 hr. Excess phosphorus oxychloride was then distilled at reduced pressure, and the syrupy residue was added cautiously, a little at a time, onto finely crushed ice with vigorous stirring. The resulting solid product was filtered and washed well with ice water followed by ether. It was recrystallized from toluene to give 17.5 g. (82%) of light yellow powder, m.p. 184°

Anal. Calcd. for C₁₂H₈N₅O₂Cl: N, 24.2. Found: N, 24.2. Preparation of 1-alkyl(aryl)-6-alkyl-4-mercaptopyrazolo[3,4-d]pyrimidines (XII). See Table II. 4-Mercapto-6-methyl-1-1-phenylpyrazolo(3,4-d)pyrimidine (XII, $R_1 = C_6H_5$, $R_2 =$ CH₃). Method (1). A mixture of finely powdered, intimately mixed 4-hydroxy-6-methyl-1-phenylpyrazolo[3,4-d]pyrimidine (11 g.) and phosphorus pentasulfide (50 g.) was added portionwise to 400 ml. of tetralin, preheated to 165°. During the addition, which required 45 min., the temperature was allowed to rise to 185°. The reaction mixture was then heated to 190–195° for 6 hr., with continuous stirring. The solution was then cooled overnight and filtered. The product was washed with Skellysolve "B," and finally dissolved in dilute potassium hydroxide solution. Precipitation of the product with acetic acid gave 5.5 g. (46.6%), m.p. $266-268^{\circ}$.

For analytical purposes part of the product was recrystallized from ethanol to give a light yellow solid, m.p. 268.5°

Anal. Calcd. for C₁₂H₁₀N₄S: C, 59.5; H, 4.16; N, 23.1. Found: C, 59.4; H, 4.16; N, 23.4.

Method (2). A mixture of 14 g. of 4-chloro-6-methyl-1phenylpyrazolo [3,4-d]pyrimidine and 14 g. of c.p. thiourea in 120 ml. of absolute ethanol was refluxed for 4 hr. A light yellow solid separated on cooling. The product was filtered and washed well with cold ethanol and water. The product was further purified by precipitation from a hot basic solution with acetic acid to give 11.5 g. (83.3%) of a white solid, m.p. 268.5°. A mixed melting point of the product and the one prepared by method (1) indicated no depression. Their ultraviolet absorption spectra were identical.

All the other 4-mercapto derivatives were prepared by essentially the same procedure as Method (2).

Preparation of 1-alkyl(aryl)-6-alkyl-4-alkylmercaptopyrazolo [3,4-d] pyrimidines (XIII). See Table II. 1,6-Dimethyl-4-methylmercaptopyrazolo(3,4-d)pyrimidine (XIII, R_1 , R_2 , $R_3 = CH_3$). A mixture of 13 g. of 1,6-dimethyl-4-mercaptopyrazolo[3,4-d]pyrimidine, 40 ml. of 4N potassium hydroxide, 18 g. of methyl iodide, and 30 ml. of methanol was shaken vigorously in a separatory funnel for 30 min. The contents were allowed to stand overnight at 40°. The white solidwas filtered and recrystallized from dilute methanol. The yield was 12.5 g. (90.2%), m.p. $74-75^{\circ}$. Anal. Calcd. for $C_8H_{10}N_4S$: N, 28.8. Found: N, 28.7.

4-Ethylmercap to-6-methyl-1-phenylpyrazolo [3,4-d] pyrimidine (XIII, $R_1 = C_6H_5$, $R_2 = CH_3$, $R_3 = C_2H_5$). Nine g. of 4 - mercapto - 6 - methyl - 1 - phenylpyrazolo [3,4-d] pyrimidine was added to 200 ml. of water containing 15 g. of potassium hydroxide and 21 g. of ethyl iodide. To this mixture was added 100 ml. of ethanol to make the solution homogeneous. The mixture was refluxed for 5 hr. It was then reduced in volume until an oily product appeared which solidified slowly on standing. The product was filtered, washed well with water, and recrystallized from dilute ethanol. The yield of slightly yellow needles was 3 g. (30%), m.p. 86–88°. Anal. Calcd. for C₁₄H₁₄N₄S: N, 20.7. Found: N, 20.9.

 $Preparation\ of\ 4-alkoxy-1-alkyl(aryl)-6-methylpyrazolo\ [3,4-methylpyrazolo]$ d]pyrimidines (XIV). See Table II. 4-Ethoxy-6-methyl-1-ptolylpyrazolo[3,4-d]pyrimidine (XIV, $R_1 = p-CH_3-C_6H_4$, $R_2 = CH_3$, $R_3 = C_2H_5$). To a solution of 100 ml. absolute ethanol and 5.5 g. of 4-chloro-6-methyl-1-(p-tolyl)pyrazolo-[3,4-d]pyrimidine was added, slowly, with shaking, a solution prepared by dissolving 2 g. of sodium in 70 ml. of ethanol. The mixture was allowed to stand at room temperature for 2 hr., with occasional shaking. It was then heated on a steam bath for 40 min. and sodium chloride

TABLE III 6-Alkkil-4-N-substituted Parazolo [3,4-d]pyrimidines

		Z	46.7	42.7	39.7	34.5	29.1	30.4	42.8	39.5			27.4	28 6	25.9	25.5	27.6	27.3	23.9			0	30.9	26. 7		27.2	5	8.12	24.8 8	26.4	25.2	25.5		22. 4
	Found	H	4.95					4.75			7.10				4.37			5.97	2.00		5.83	í	4.73	5.47		5.82				6.34	89.9			5 10
Analyses		೦	48.4					57.5			57.0				57.2			66.7	8.89		47.5		64.0	65.7		66.4				8.99	67.7		1	71.7
Anal		Z	47.0	42.9	39.5	34.2	29.3	30.6	42.9	39.5	36.6		27.7	28.8 8.8	25.6	25.6	27.7	27.7	23.7			,	31.1	29.3		27.7	1	7.77	25.0	26.2	25.0	25.9	9	27.2
	Calcd.	H	4.60					4.83			6.85				4.33			5.98	7.17		5.65	•	4.92	5.48		5.94				6.37	6.81		;	5.44
		O	48.3					57.7			56.5				57.1			66.5	69.2		47.1		0.4.0	65.3		66.5				67.4	68.4		i	7.2.4
Recrystal-	lization	Solvents	Ethanol, water	Ethanol, water	Ethanol	Ethanol	Ethanol	Ethanol	Ethanol, water	Water	Toluene,	heptane	Ethanol	Ethanol	Ethanol	Ethanol, water	Ethanol	Ethanol	Ethanol		Ethanol		Ethanol, water	Ethanol, water		Ethanol	1741.	Evilanoi	Ethanol	Ethanol, water	Ethanol, water	Heptane	,	Ethanol
		w .	8,800	9,950	12,600	12,700		12,900	9,300	13,500	22,000						16,000	,	13,000	•	11,100	1	18,700	26,000	16,200	24,300	18,200	79,000		23,400 16,700		21,000	13,900	16,800
ion	pH 11,	$\lambda_{\rm max}$	265	275	275	276		275	262	279	279						282		279		278	000	230 270	238 238	236	236	200 200 200 200 200 200 200 200 200 200	607		538 586 586		238	286	73.7 78.5 78.5
U.V. Absorption		w	8,650	7,650	10,100	10,700			9,450	11,700	21,000						15,400		24,800	13,000	22,000	15,200	25,200	36,000		30,600	90 700	23,400		30,800		22,300	000	29,000
U.V	pH 1,	λ_{max}	259	265	569	270			260	265	566						270		215	569	223 965	202	852	242		247	060	707		243		243	,	245
	Yield,	%	73.0	0.09	56.0	49.1	87.2	59.0	0.06	77.2	6.99		83.0	54.6	0.09	67.0	0.09	74.7	48.5		87.3	1	67.28	80.3		82.5	01	7.10	83.0	86.0	61.0	49.1	6	92.0
Method	of	Prepn.	A	В	В	В	В	೦	V	В	Ö		m	೦	23	B	В	В	В		В	•	A	В		C	2	9 (ప	В	၁	ပ	ç	Я
	M.P.,	°C.	>300	>300	273 - 274	220 - 222	241	243 - 244	251 - 252	136 - 138	131.5 - 132		180 - 182	140 - 141.5	223.5 - 224	231.5	224 - 225.5	225-227	218-218.5		259-260	000	687-187	162-163		117-117.5	1	70	99-99	143–144	175-177	159-160		187-188
		R_5	Н	CH3		CH2-CH3	CH_2 — C_6H_5	Furfuryl	H	CH_3	C_sH_s		$ m CH_2-\!\!\!\!-C_6H_6$	Furfuryl	o-Cl—CeH	$p ext{-}\mathrm{Cl} ext{-}\mathrm{C}_6\mathrm{H}_4$	o-CH3-C6H4	$p\text{-CH}_3\text{C}_6\text{H}_4$	2,6-Diethylphenyl		$ m NH_2$		Ħ	CH,	,	CH_3	110		C_2H_5		$C(CH_3)_3$	CH2—CH2—	$N(C_2H_5)_2$	-C ₆ H ₅
		2	Н	Н	Н	H	H	H	H	H	Η		Η	Η	H	H	Н	Н	H		H	1	Ξ	Н		CH_3	11	1 7	C_2H_5	H	H	Н	ţ	L CH C
		R	CH_3	$ m CH_3$	CH_3	$ m CH_3$	CH_3	CH3	CH3	CH_3	$ m CH_3$		CH_3	CH_3	CH_3	CH_3	CH_3	CH3	CH3		CH_3	į	CH,	CH_3	,	CH_3	I	CII3	CH	CH_3	CH_3	$ m CH_3$	Š	CH,
		R _L	H	Н	Н	Н	Н	H	CH_3	CH_3	CH_s		CH³	CH_3	CH3	CH,	CH,	CH	CH,		CH_3	Ė	C ₆ H ₅	C,H,	3	C,H,	11 7	Cerrs	C_6H_5	$C_{\mathbf{i}}\mathbf{H}_{\mathbf{i}}$	C_6H_5	C_6H_5	;	C,H,

TABLE III (Continued)

R _b °C. 1 Preph. °C. 2 245 28, 400 28 28, 80 C House				2	Method	Vield	U.V	U.V. Absorption	ion		Recrystal- lization		Caled.	Analyses		Found	
CHILL 165-154.5 C 56.2 243 39,400 28,80 Toknero,	Щ	3ء	ጼ	,C.	Prepn.	%	λmax		λmax	ų	Solvents	0	H	Z	0	H	Z
Cells 262-263 B 50.5 246 9,600 247 26,500 Ethanol 57.0 3.71 m-Br-Call, and call	H		Furfuryl	153-154.5	O	56.2	243	39,400	238	28,800	Toluene,	67.0	4.96	23.0	67.3	4.87	23.1
$m_{\rm e}$ Br- $C_{\rm e}H_{\rm e}$ 215 - 127 B 68.0 9 3.3 1.3 B. Shanol 57.0 51.0			C_6H_5	262-263	В	50.5	246 300	9,600	247	26,500	2-Ethoxy-ethanol			23.3			23.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Щ.		m-Br —C ₆ H ₄	215 - 127	В	0.89					Ethanol	57.0	3.71	18.4	56.7	3.93	18.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ш	۰	$o ext{-Cl} ext{-C}_6 ext{H}_4$	175 - 176	В	51.3					Ethanol						21.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	114		m -Cl $$ C $_{\mathbf{t}}$ H $_{\mathbf{t}}$	192–193	a	90.0	247	28,800	238 305	17,400 $16,400$	Ethanol	64.6	4.21		64.2	4.60	20.9
2,6-Diethylphenyl 189-190 B 71.2 24,20e 283 19,200 Pyridine 60.0 5.00 NH-C ₆ H ₅ 246-Diethylphenyl 188-190 B 71.5 25,200 283 11,300 Pyridine 67.3 5.00 CH ₃ 148-148.5 C 73.3 238 15,900 249 2,950 Behanol 67.5 6.10 7.17 6.20 7.17 25.5 6.20 8.05 7.17 6.20 7.17 7.17 7.17 7.17 7.27		H	$p ext{-Cl} ext{C}_6 ext{H}_4$	226-226.5	В	85.0	248	25,800	252	73,500	Ethanol, water	64.6	4.21		64.0	4.33	20.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,	ر بر	2,6-Diethylphenyl	189–190	æ i	71.2	;	1	;		Ethanol						19.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	_	TÍ	$ m NH_2$	243-244	Я	80.1	242	25, 200	533 583 783	19,200 11,300	Pyridine	0.09	5.00	35.0 (60.2	5.12	35.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	CH3	Ħ		240-241	В	47.5					Pyridine	67.3		26.6	67.7		26.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		CH_3		90.5 - 91	B	55.5					Ethanol	67.5				6.62	26.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C_2H_5	Ħ	$\mathrm{C}(\mathrm{CH_3})_3$	148-148.5	೮	73.3	538	15,900	240 286	2,950 3,250	Ethenol, sublimed	69.2			69.4	70.7	23.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C_2H_5	H	$\mathrm{CH_2}$ $\mathrm{C_6H_5}$	129-129.5	C	48.5	245	24,300	239 287	9,530 6,250	Benzene,			21.3			21.3
m-Cl—C ₆ H ₅ 187-189 B 74.0 Fannal Ethanol Ethanol p -Cl—C ₆ H ₅ 208.5-209.5 B 77.8 77.8 29,800 242 19,600 Ethanol Ethanol m -CH ₃ —C ₆ H ₅ 175-176 B 75.5 247 29,800 242 19,600 Ethanol Ethanol m -CH ₃ —C ₆ H ₅ 189-200 B 78.6 24.1 28,200 252 25,600 Ethanol Ethanol 2,5-Dichlorophenyl 181-183 B 78.6 244 28,200 252 25,600 Ethanol Ethanol NH ₂ 198-199 B 87.5 244 28,200 252 25,600 Ethanol 61.5 5.55 H 296.5-298 A 75.7 233 7,650 225 25,600 Ethanol 61.5 5.55 CH ₃ 198-199 B 87.5 244 29,600 239 14,200 water CH ₃ 144-146<	C_2H_5	Ħ	o-Cl—C,H,	168-168.5	В	71.5			• 	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	2-Ethoxy-	65.5	4.62	20.0	0.99	4.71	19.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\widetilde{\mathrm{C}}_{\mathrm{H}_{\mathrm{b}}}^{\mathrm{H}_{\mathrm{b}}}$	н:	m-Cl—C ₆ H ₅	187–189	В	74.0					etnanol Ethanol			20.0			19.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$,	II.	$p ext{-} ext{Cl} ext{-} ext{C}_{6} ext{H}_{\mathfrak{5}}$	208.5-209.5	Ħ	87.8					2-Ethoxy- ethanol			0.02			19.8
m-CH ₃ —CeH ₅ 169.5 B 58.0 Ethanol Ethanol p -CH ₃ —CeH ₅ 199-200 B 78.6 Ethanol Ethanol $2,6$ -Dichlorophenyl 181-183 B 42.1 28,200 252 25,600 Ethanol $2,6$ -Dichlyphenyl 191-191.5 B 87.5 30,4 18,500 Ethanol 61.5 5.55 NH ₂ 198-199 B 87.5 30,4 28,200 Ethanol 61.5 5.55 H 296.5-298 A 75.7 233 7,650 244 29,600 239 22,500 Methanol 61.5 5.55 Ch ₃ 181-182.5 B 86.0 244 29,600 239 22,500 Methanol 61.5 5.55 Ch ₃ 144-146 B 80.0 244 25,700 239 16,300 Ethanol 61.5 5.55 Ch ₂ —CH ₂ —CH ₃ — 165 C 62.8 244 25,700 239 <		н	$o ext{-} ext{CH}_3 ext{} ext{C}_6 ext{H}_5$	175-176	В	75.5	247	29,800	242 291	19,600 $16,300$	Ethanol			21.3			21.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Н	m-CH ₃ —C ₆ H ₅	169.5	В	58.0					Ethanol			21.3			21.3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			$p ext{-}\mathrm{CH}_3 ext{-}\mathrm{C}_6\mathrm{H}_5$	199–200	М 5	78.6					Ethanol			21.3			21.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	L L L L	d h	2,5-1)ichlorophenyi	181-183	zd ta	42.1 38.0	777	006 86	959	95,600	Ethanol Fithanol			7 2 2			4.01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1	2,0-roteiny spacetry	0:101 101	4	9.00	1	007 607	304	18,500	T STORY						10.9
CH ₃ $181-182.5$ B 86.0 244 $29,600$ 239 $22,500$ Methanol, CH ₃ $14,200$ water 283 $14,200$ water 283 $14,200$ water 284 $14,200$ water 289 $16,300$ Ethanol 289 $16,300$ Chandle 289 $16,300$ Chandle 289 $22,200$ Ethanol 289 $22,200$ 299 $23,300$ 299 $23,300$ 299 $23,300$ 299 $23,300$ 299 $23,300$ 299 $23,300$ 299 $23,300$ 299 $23,300$ 299	C ₂ H ₅ 1	H t	NH2	198–199	a	87.5	000	1			Ethanol	61.5			61.4	5.29	33.2
CH ₃ 191–102.9 D 00.0 244 23,000 239 22,200 Ethanol CH ₄ 144–146 B 82.2 248 24,800 239 22,200 Ethanol CH ₂ —CH ₅ 144–146 B 80.0 Ethanol, water CH ₂ —CH ₅ 165 C 62.8 244 25,700 239 23,300 Toluene, N(C ₂ H ₅) ₂ 219–221 B 76.5 253 30,000 241 23,200 Ethanol m-Br—C ₆ H ₄ 294.5–295.5 A 71.8 Ethanol		- -	II Cu	290.0-298 101.109.E	₹ ₽	/ 0. / 0 0 0 0	255	000,7	066	003 600	Evnanoi Motheral			53.5			4.62
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	-	OIL3	101-107	4	0.00	117	29,000	283 283	14,200	water) 1			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\overline{}$	Ή.		149–151	В	82.2	248	24,800	239 289	22,200 $16,300$	Ethanol			26.2			26.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		н	C_2H_5	144-146	В	80.0					Ethanol, water			26.2			26.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Н	$^{\mathrm{CH_2}\!-\!\mathrm{CH_2}\!-\!}_{\mathrm{N}(\mathrm{C_2}\!+\!\mathrm{I_5})_2}$	165	Ü	62.8	244	25,700	239 283	23,300 14,900	Toluene, heptane			24.8			24.8
$m ext{-BrC}_6 ext{H}_4$ 218-220 B 63.5 253 30,000 241 23,200 Ethanol H 294.5-295.5 A 71.8 Ethanol Ethanol		Ξ	0-Cl—C,H,	219-221	23	76.5					Pyridine	65.4			65.2 4	4.44	20.2
H 294.5–295.5 A 71.8 Ethanol	14	—	$m ext{-Br} ext{C}_6 ext{H}_4$	218-220	В	63.5	253	30,000	$\frac{241}{315}$	23,200 $19,300$	Ethanol			17.8			18.0
(H.) (1.7) (1.7)	,	H CH,		294.5 - 295.5	∢ ∵	71.8					Ethanol Ethanol			27.0 24.4		•••	27.1 94.4

TABLE III (Continued)

filtered from the hot reaction mixture. To the filtrate was added 50 ml. of water, and the clear solution was cooled overnight. White, fluffy long needles were formed the second day, which were filtered and recrystallized from dilute ethanol to give 3.1 g. (53%) of the desired product, m.p. $93-94^{\circ}$.

Anal. Calcd. for C₁₅H₁₆N₄O: N, 20.0. Found: N, 20.8.

The other 4-alkoxy compounds were prepared by essen-

tially the same method.

Preparation of 6-alk

Preparation of 6-alkyl-4-N-substituted aminopyrazolo [3,4-d] pyrimidines (XV). See Table III. General Method (A). This method is illustrated by the following example. 4-Amino-6-methylpyrazolo [3,4-d] pyrimidine (XV, R₁, R₄, R₅ = H, R₂ = CH₃). A mixture of 10 g. of 4-chloro-6-methylpyrazolo [3,4-d] pyrimidine (XI, R₁ = H, R₂ = CH₃) and 120 ml. of alcoholic ammonia was heated in a bomb at 160° for 8 hr. The reaction product was evaporated on a steam bath to dryness. The residue was boiled with dilute hydrochloric acid. The solution was treated with charcoal and filtered. The product was reprecipitated by the addition of ammonium hydroxide. The product was then filtered and recrystallized from dilute ethanol to give 6.5 g. (73%) of light yellow needles, m.p. > 300°.

Anal. Calcd. for C₆H₇N₅: C, 48.3; H, 4.60; N, 47.0.

Found: C, 48.4; H, 4.95; N, 46.7.

General Method (B). This method is illustrated by the following specific examples. 4-n-Butylamino-6-methylpyrazolo [3,4-d]pyrimidines (XV, R₁, R₄ = H, R₂ = CH₃, R₅ = CH₂—CH₂—CH₂—CH₃). Five g. of 4-chloro-6-methylpyrazolo (3,4-d)pyrimidine was added to a mixture of 7 g. of n-butylamine and 120 ml. of absolute ethanol. The mixture was refluxed on a steam bath for 7 hr., light yellow needles formed in the hot solution. The product was filtered and recrystallized from ethanol to give 3 g. (49.1%) of white needles, m.p. 220–222°.

Anal. Calcd. for C₁₀H₁₅N₅: N, 34.2. Found: N, 34.5.

4-(p-Chloroanilino)-6-methyl-1-phenylpyrazolo [3,4-d]pyrimidine (XV, $R_1 = C_6H_5$, $R = CH_3$, $R_4 = H$, $R_5 = p$ -Cl- C_6H_4). Five g. of 4-chloro-6-methyl-1-phenylpyrazolo [3,4-d]-pyrimidine was added to a mixture of 8 g. of p-chloroaniline and 75 ml. of absolute ethanol. The mixture was refluxed on a water bath for 40 min., and a yellow solid separated from the hot solution. The mixture, after cooling in an ice bath for 3 hr. was filtered. The crude product, 6.2 g., m.p. 220–223°, was recrystallized from dilute ethanol to give 5.6 g. (82%) of white needles, m.p. 226–226.5°.

Anal. Calcd. for $C_{18}H_{18}N_3Cl$: C, 64.4; H, 4.21; N, 20.9. Found: C, 64.0; H, 4.33; N, 20.7.

1-(p-Chlorophenyl)-6-methyl-4-(p-phenylethylamino)pyra-

zolo [3,4-d] pyrimidine (XV, $R_1 = p\text{-Cl-C}_6H_4$, $R_2 = CH_3$, $R_4 = H$, $R_5 = CH_2\text{--}CH_2\text{--}C_6H_5$). Nine g. of 4-chloro-1-(p-chlorophenyl)-6-methylpyrazolo [3,4-d] pyrimidine was added to 160 ml. of absolute ethanol containing 10 g. of β -phenylethylamine. The mixture was boiled gently on a steam bath to near dryness. To the residue was added 20 ml. of methanol. The solid produce was filtered and recrystallized from ethanol to give 11 g. (94%) of white needles, m.p. 175–176°.

Anal. Calcd. for $C_{20}H_{18}N_5Cl$: C, 66.0; H, 4.98; N, 19.3. Found: C, 65.7; H, 5.12; N, 19.7.

General Method (C) is illustrated by the following examples. 4-Furfurylamino-1,6-dimethylpyrazolo [3,4-d]pyrimidine (XV, R₁, R₂ = CH₃, R₄ = H, R₅ = CH₂—C₄H₃O). A mixture of 5.5 g. of 4-chloro-1,6-dimethylpyrazolo [3,4-d]pyrimidine, 5.5 g. of furfurylamine, and 200 ml. of absolute ethanol was heated on a steam bath for 8 hr. The mixture was then evaporated, and the syrupy residue was stirred with 30 ml. of 10% potassium hydroxide solution so as to neutralize the hydrochloride salt. The alkaline solution was decanted, and the syrup was boiled with 100 ml. of benzene for 2 hr. The hot benzene solution was filtered and evaporated to dryness. The light yellow solid remaining was recrystallized twice from ethanol to give 4 g. (54.6%) of white needles, m.p. 140–141.5°.

Anal. Calcd. for C₁₂H₁₃N₄O: N, 28.8. Found: N, 28.6.

4-Benzylamino-6-ethyl-1-phenylpyrazolo [3,4-d]pyrimidine (XV, $R_1 = C_6H_5$, $R_2 = C_2H_5$, $R_4 = H$, $R_5 = CH_2$ — C_6H_5). To a solution of 13 g. of 4-chloro-6-ethyl-1-phenylpyrazolo-[3,4-d]pyrimidine in 150 ml. of absolute ethanol was added slowly, with stirring, a solution of 13 g. of benzylamine in 50 ml. of absolute ethanol. The mixture was refluxed for 12 hr. Excess ethanol was evaporated, and the syrupy product was treated with benzene and several drops of methanol. The compound solidified slowly after refrigeration. The product was recrystallized from a mixture of ethanol and benzene to give 8 g. (48.5%) of white crystals, m.p. 129–129.5°.

Anal. Calcd. for C₂₀H₁₉N₅: N, 21.3. Found: N, 21.4.

Acknowledgment. The authors wish to thank Mr. Wayne Noell, Mr. Leroy Townsend, and Mr. Leland Lewis for their valuable assistance in microanalyses and ultraviolet absorption measurements. The authors are also indebted to Dr. Brian Lynch for helpful discussions related to this work.

LAS VEGAS, N. M.